pydantic_ai.low_level
Low-level methods to make requests directly to models with minimal abstraction.
These methods allow you to make requests to LLMs where the only abstraction is input and output schema translation so you can request all models with the same API.
These methods are thin wrappers around Model
implementations.
LowLevelModelResponse
dataclass
Bases: ModelResponse
Subclass of ModelResponse
that includes usage information.
Source code in pydantic_ai_slim/pydantic_ai/low_level.py
23 24 25 26 27 28 29 |
|
usage
class-attribute
instance-attribute
usage: Usage = field(default_factory=Usage)
Usage information for the request.
model_request
async
model_request(
model: Model | KnownModelName | str,
messages: list[ModelMessage],
*,
model_settings: ModelSettings | None = None,
model_request_parameters: (
ModelRequestParameters | None
) = None,
instrument: InstrumentationSettings | bool | None = None
) -> LowLevelModelResponse
Make a non-streamed request to a model.
from pydantic_ai.low_level import model_request
from pydantic_ai.messages import ModelRequest
async def main():
model_response = await model_request(
'anthropic:claude-3-5-haiku-latest',
[ModelRequest.user_text_prompt('What is the capital of France?')] # (1)!
)
print(model_response)
'''
LowLevelModelResponse(
parts=[TextPart(content='Paris', part_kind='text')],
model_name='claude-3-5-haiku-latest',
timestamp=datetime.datetime(...),
kind='response',
usage=Usage(
requests=1,
request_tokens=56,
response_tokens=1,
total_tokens=57,
details=None,
),
)
'''
- See
ModelRequest.user_text_prompt
for details.
Then
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model | KnownModelName | str
|
The model to make a request to. We allow |
required |
messages
|
list[ModelMessage]
|
Messages to send to the model |
required |
model_settings
|
ModelSettings | None
|
optional model settings |
None
|
model_request_parameters
|
ModelRequestParameters | None
|
optional model request parameters |
None
|
instrument
|
InstrumentationSettings | bool | None
|
Whether to instrument the request with OpenTelemetry/logfire, if |
None
|
Returns:
Type | Description |
---|---|
LowLevelModelResponse
|
The model response and token usage associated with the request. |
Source code in pydantic_ai_slim/pydantic_ai/low_level.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
|
model_request_sync
model_request_sync(
model: Model | KnownModelName | str,
messages: list[ModelMessage],
*,
model_settings: ModelSettings | None = None,
model_request_parameters: (
ModelRequestParameters | None
) = None,
instrument: InstrumentationSettings | bool | None = None
) -> LowLevelModelResponse
Make a Synchronous, non-streamed request to a model.
This is a convenience method that wraps model_request
with
loop.run_until_complete(...)
. You therefore can't use this method inside async code or if there's an active event loop.
from pydantic_ai.low_level import model_request_sync
from pydantic_ai.messages import ModelRequest
model_response = model_request_sync(
'anthropic:claude-3-5-haiku-latest',
[ModelRequest.user_text_prompt('What is the capital of France?')]
)
print(model_response)
'''
LowLevelModelResponse(
parts=[TextPart(content='Paris', part_kind='text')],
model_name='claude-3-5-haiku-latest',
timestamp=datetime.datetime(...),
kind='response',
usage=Usage(
requests=1, request_tokens=56, response_tokens=1, total_tokens=57, details=None
),
)
'''
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model | KnownModelName | str
|
The model to make a request to. We allow |
required |
messages
|
list[ModelMessage]
|
Messages to send to the model |
required |
model_settings
|
ModelSettings | None
|
optional model settings |
None
|
model_request_parameters
|
ModelRequestParameters | None
|
optional model request parameters |
None
|
instrument
|
InstrumentationSettings | bool | None
|
Whether to instrument the request with OpenTelemetry/logfire, if |
None
|
Returns:
Type | Description |
---|---|
LowLevelModelResponse
|
The model response and token usage associated with the request. |
Source code in pydantic_ai_slim/pydantic_ai/low_level.py
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
model_request_stream
async
model_request_stream(
model: Model | KnownModelName | str,
messages: list[ModelMessage],
*,
model_settings: ModelSettings | None = None,
model_request_parameters: (
ModelRequestParameters | None
) = None,
instrument: InstrumentationSettings | bool | None = None
) -> AsyncIterator[StreamedResponse]
Make a streamed async request to a model.
from pydantic_ai.low_level import model_request_stream
from pydantic_ai.messages import ModelRequest
async def main():
messages = [ModelRequest.user_text_prompt('Who was Albert Einstein?')]
async with model_request_stream( 'openai:gpt-4.1-mini', messages) as stream:
chunks = []
async for chunk in stream:
chunks.append(chunk)
print(chunks)
'''
[
PartStartEvent(
index=0,
part=TextPart(content='Albert Einstein was ', part_kind='text'),
event_kind='part_start',
),
PartDeltaEvent(
index=0,
delta=TextPartDelta(
content_delta='a German-born theoretical ', part_delta_kind='text'
),
event_kind='part_delta',
),
PartDeltaEvent(
index=0,
delta=TextPartDelta(content_delta='physicist.', part_delta_kind='text'),
event_kind='part_delta',
),
]
'''
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Model | KnownModelName | str
|
The model to make a request to. We allow |
required |
messages
|
list[ModelMessage]
|
Messages to send to the model |
required |
model_settings
|
ModelSettings | None
|
optional model settings |
None
|
model_request_parameters
|
ModelRequestParameters | None
|
optional model request parameters |
None
|
instrument
|
InstrumentationSettings | bool | None
|
Whether to instrument the request with OpenTelemetry/logfire, if |
None
|
Returns:
Type | Description |
---|---|
AsyncIterator[StreamedResponse]
|
A stream response async context manager. |
Source code in pydantic_ai_slim/pydantic_ai/low_level.py
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
|